
Sequence diagram syntax
A sequence diagram is an interaction diagram that shows how processes operate with one another and in what order.

Most developers would find the syntax fairly familiar. The following example demonstrates some basic syntaxes.

A->B: Event
A->B.
method() {
  if(x) {
    C.
doSomething
  }
}

Participants

The participants can be defined implicitly as in the first example on this page. The participants are rendered in order of appearance in the diagram 
source text. Sometimes you might want to show the participants in a different order than how they appear in the first message. It is possible to 
specify the participant’s order of appearance by doing the following:

B
A
A.method()
A->B: Event

Participant group

We can group the participants with  keyword.group



group 
GroupName {
  A
  B
}
C

Participant type (Annotation)

We can change the shape of the participant representation with .annotations

@Actor A
@Database B
@Boundary C
@Control D
@Entity E
@EC2 F
@ECS G
@RDS H
@S3 I
@IAM J
@Lambda K

Stereotype

It is possible to add stereotypes to participants using  and .<< >>

<<Callable>>
B
<<Service>> 
A
A.method()
A->B: Event

Starter

ADVANCED



By default, the “client” of the interaction is not shown in the diagram. However, you can specify a “client” with the  keyword. @Starter
Specifically, if the starter’s name is “User” or “Actor”, we will use a Stickman icon.  must be put after you have declared all @Starter
participants and before any messages.

<<Callable>>
B
<<Service>> 
A
@Starter
(User)
A.method()
A->B: Event

Messages

A message is shown as a line from the sender MessageEnd to the receiver MessageEnd.
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See Unified Modeling Language v2.5.1, section 17.4.4.1.
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Loops

The loop operand will be repeated a number of times. This is expressed by the notation:



while(condition) {}
for(enumerator) {}
forEach(enumerator) {}

See the example below:

loop("Every 
minute") {
  Alice-
>Bob: Great!
}

Alt

The alt operand represents a choice of behavior. At most one of the operands will be chosen. This is expressed by the notions:

if (condition1) {
  ...
} else if (condition2) {
  ...
} else {
  ...
}

if (x) {
  A.m1()
} else if (y) {
  A.m2()
} else {
  A.m3()
}
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