
Sequence diagram syntax
A sequence diagram is an interaction diagram that shows how processes operate with one another and in what order.

Most developers would find the syntax fairly familiar. The following example demonstrates some basic syntaxes.

A->B: Event
A->B.
method() {
 if(x) {
 C.
doSomething
 }
}

Participants

The participants can be defined implicitly as in the first example on this page. The participants are rendered in order of appearance in the diagram
source text. Sometimes you might want to show the participants in a different order than how they appear in the first message. It is possible to
specify the participant’s order of appearance by doing the following:

B
A
A.method()
A->B: Event

Participant group

We can group the participants with keyword.group

group
GroupName {
 A
 B
}
C

Participant type (Annotation)

We can change the shape of the participant representation with .annotations

@Actor A
@Database B
@Boundary C
@Control D
@Entity E
@EC2 F
@ECS G
@RDS H
@S3 I
@IAM J
@Lambda K

Stereotype

It is possible to add stereotypes to participants using and .<< >>

<<Callable>>
B
<<Service>>
A
A.method()
A->B: Event

Starter

ADVANCED

By default, the “client” of the interaction is not shown in the diagram. However, you can specify a “client” with the keyword. @Starter
Specifically, if the starter’s name is “User” or “Actor”, we will use a Stickman icon. must be put after you have declared all @Starter
participants and before any messages.

<<Callable>>
B
<<Service>>
A
@Starter
(User)
A.method()
A->B: Event

Messages

A message is shown as a line from the sender MessageEnd to the receiver MessageEnd.

M
es
sa
ge
ty
pe

DSL Lin
e
an
d
arr
ow
he
ad
(S
pe
c)

Asy
nc

A->B:
Async
message

soli
d
line
with
ope
n
arro
whe
ad

See Unified Modeling Language v2.5.1, section 17.4.4.1.

1.

2.

3.

Sy
nc

A.
method()

fille
d
arro
whe
ad

Re
ply

ret
=
A.
me
thod
ret
urn
ret
@r
etu
rn

das
hed
line
with
eith
er
an
ope
n
or
fille
d
arro
whe
ad
*
Zen
UM
L
ren
der
er
use
ope
n
arro
whe
ad.

Obj
ect
cre
ation

new
ClassN
ame()

das
hed
line
with
an
ope
n
arro
whe
ad

Obj
ect
del
etion

NOT
SUPP
ORTE

D
YET

Mus
t
end
in a
Des
truct
ion
Occ
urre
nce
Spe
cific
ation

Lost NOT
SUPP
ORTE

D
YET

A
sma
ll
blac
k
circl
e at
the
arro
w
end
of
the
mes
sage

Fo
und

NOT
SUPP
ORTE

D
YET

A
sma
ll
blac
k
cirle
at
the
start
ing
end
of
the
mes
sage

Loops

The loop operand will be repeated a number of times. This is expressed by the notation:

while(condition) {}
for(enumerator) {}
forEach(enumerator) {}

See the example below:

loop("Every
minute") {
 Alice-
>Bob: Great!
}

Alt

The alt operand represents a choice of behavior. At most one of the operands will be chosen. This is expressed by the notions:

if (condition1) {
 ...
} else if (condition2) {
 ...
} else {
 ...
}

if (x) {
 A.m1()
} else if (y) {
 A.m2()
} else {
 A.m3()
}

	Sequence diagram syntax

